TheVirtualBrain:

TheDocumentationwebsite.

Source code for tvb.adapters.visualizers.pse_discrete

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and 
# Web-UI helpful to run brain-simulations. To use it, you also need do download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2020, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as follows:
#
#   Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide,
#   Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013)
#       The Virtual Brain: a simulator of primate brain network dynamics.
#   Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010)
#
#

"""
.. moduleauthor:: Lia Domide <lia.domide@codemart.ro>
.. moduleauthor:: Ionel Ortelecan <ionel.ortelecan@codemart.ro>
.. moduleauthor:: Bogdan Neacsa <bogdan.neacsa@codemart.ro>
"""
from tvb.adapters.visualizers.pse import PSEDiscreteGroupModel
from tvb.core.adapters.abcadapter import ABCAdapterForm
from tvb.core.adapters.abcdisplayer import ABCDisplayer
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.entities.model.model_datatype import DataTypeGroup
from tvb.core.neotraits.forms import TraitDataTypeSelectField
from tvb.core.neotraits.view_model import ViewModel, DataTypeGidAttr

MAX_NUMBER_OF_POINT_TO_SUPPORT = 512


[docs]class DiscretePSEAdapterModel(ViewModel): datatype_group = DataTypeGidAttr( linked_datatype=DataTypeGroup, label='Datatype Group' )
[docs]class DiscretePSEAdapterForm(ABCAdapterForm): def __init__(self, prefix='', project_id=None): super(DiscretePSEAdapterForm, self).__init__(prefix, project_id) self.datatype_group = TraitDataTypeSelectField(DiscretePSEAdapterModel.datatype_group, self, name='datatype_group', conditions=self.get_filters()) @staticmethod
[docs] def get_view_model(): return DiscretePSEAdapterModel
@staticmethod
[docs] def get_required_datatype(): return DataTypeGroup
@staticmethod
[docs] def get_input_name(): return 'datatype_group'
@staticmethod
[docs] def get_filters(): return FilterChain(fields=[FilterChain.datatype + ".no_of_ranges", FilterChain.datatype + ".no_of_ranges", FilterChain.datatype + ".count_results"], operations=["<=", ">=", "<="], values=[2, 1, MAX_NUMBER_OF_POINT_TO_SUPPORT])
[docs]class DiscretePSEAdapter(ABCDisplayer): """ Visualization adapter for Parameter Space Exploration. Will be used as a generic visualizer, accessible when input entity is DataTypeGroup. Will also be used in Burst as a supplementary navigation layer. """ _ui_name = "Discrete Parameter Space Exploration" _ui_subsection = "pse"
[docs] def get_form_class(self): return DiscretePSEAdapterForm
[docs] def get_required_memory_size(self, view_model): # type: (DiscretePSEAdapterModel) -> int """ Return the required memory to run this algorithm. """ # Don't know how much memory is needed. return -1
[docs] def launch(self, view_model): # type: (DiscretePSEAdapterModel) -> dict """ Launch the visualizer. """ pse_model = PSEDiscreteGroupModel(view_model.datatype_group.hex, None, None, '') pse_context = pse_model.pse_context pse_context.prepare_individual_jsons() return self.build_display_result('pse_discrete/view', pse_context, pages=dict(controlPage="pse_discrete/controls"))
@staticmethod
[docs] def prepare_parameters(datatype_group_gid, back_page, color_metric=None, size_metric=None): pse_model = PSEDiscreteGroupModel(datatype_group_gid, color_metric, size_metric, back_page) return pse_model.pse_context